
STUDY OF THE CHARACTERISTICS
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The problem of diffraction of a plane wave on "sphere−cone−sphere" and "cone−sphere" bodies by
the method of auxiliary sources is solved. According to this method, diffraction fields may be pre-
sented in the form of vector wave potentials with densities distributed over the auxiliary surface
drawn inside the scattering body. Comparison of theoretical and experimental results is made.
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Operation with rot is carried out on the variables without primes (i.e., not on the integration vari-

ables). Scattered fields can be represented only with the aid of electric magnetic currents in the case of k2

where is not an eigenvalue of the corresponding internal boundary-value problem for the region bounded by
the surface S0 [1]. Moreover, the auxiliary surface must enclose singular points that appear when the diffrac-
tion field is extended analytically toward the inside of the body. For convenience of the numerical solution,
unlike [2], the scattered fields will be described with the aid of magnetic currents I

_
mag. As is seen from the

expressions given above for the secondary fields, when the scattered electric fields are calculated with the use
of electric currents, it is necessary to operate with rot twice, whereas with the use of magnetic currents it
should be done once. Therefore, the representation of scattered fields by means of magnetic currents allows
one to simplify the algorithm and reduce the number of operations in the calculations. It should be noted that
the auxiliary magnetic currents I

_
mag, just as the auxiliary electric currents I

_
el, do not have a physical meaning,

but the field generated by them coincides exactly with the true diffraction field outside the scatterer by virtue
of the uniqueness theorem. As a boundary condition we use the relation [ n
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the conductivity of the surface S is perfect and, consequently, the tangential component of the total electric
field vanishes there. Replacing E

__
1 by the expression in terms of I

_
mag, we obtain the following equation for

determining the surface magnetic currents:
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To determine the scattering characteristics, it is convenient to use the vector amplitude of scattering
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, which depends on the direction of incidence k
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In this case, according to the optical scheme, the total section for scattering is determined from the expression
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in which e
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0 is the unit vector that characterizes the direction of polarization of the incident wave.
The radiolocation section for scattering is determined by the relation
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If we decompose the reflected signal into two orthogonal linearly polarized modes, then expression
(3) will describe the power contained in that mode whose polarization coincides with the polarization of the
original wave. The power of the transverse polarized signal is obtained from relation (3) by substituting e

_
 0′  =

[k
_

inc, e0] for e
_

0. 
On the basis of expressions (1)−(3), a computational algorithm was developed for solving the problem

of diffraction of electromagnetic waves on bodies of conical shape. The coordinate origin is located at the
center of the sphere circumscribed around the scatterer. To obtain a numerical solution, the auxiliary surface
S0 was subdivided into N cells.

The problem of finding the surface currents I
_

mag is reduced to the solution of the system of linear
equations by imposing the requirement of equality of the left- and right-hand sides of Eq. (1) at N points of
the scatterer and replacing the integral by a sum following the rule of rectangles. Out of 3N scalar equations
appearing in this case for calculating 3N tangential components of magnetic currents, only 2N are linearly
independent owing to the fact that div E

__
 = 0. In constructing the dependence of the radiolocation section for

scattering from the observation angle, multiple solution of linear systems with the same matrix and different
right-hand sides is required; therefore, to obtain I

_
mag, the method of matrix reversal by the Kraut algorithm

was used and also the conversions of the matrix in the L−V form [3].
As a first example, consider a body of the type "sphere−cone−sphere" with the following parameters:

semivertex angle 15o, ratio of the radii of the front and rear (respectively, smaller and larger) spheres

b ⁄ a = 1 ⁄ (1 + sin 15°) ≈ 0.7944   and   ka = 1.5 ,   k = 2π ⁄ λ .

In the calculations, auxiliary surfaces of two types were used: one similar to the scattering one with
a certain similarity factor α and an equidistant surface offset from the scattering one by a distance βa. The
results obtained from calculations with these auxiliary surfaces, whose parameters are related as β = 1 − α,
turned out to be close at a not very large β. This is due to the compactness of the body, i.e., the ratio of its
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length to its width is equal to 1.3 and two surfaces at β = 1 − α are closely spaced. Therefore, due to the
simplicity of realization, the trends were investigated with the use of an auxiliary surface, which is similar to
the scattering one. The surface was subdivided into cells in the following way: its conical part was divided
into belts by planes, which are perpendicular to the symmetry axis and the distance between which was cho-
sen so that the areas of the belts were the same; each of the spherical parts was divided into spherical belts
so that the polar angle in the coordinate system reckoned from the sphere center could obtain the same incre-
ment in passing from layer to layer. The belts obtained were divided by azimuth into a specified number of
parts, with the parameters of division being selected so that the areas of the cells were approximately identi-
cal. The requirement for the method to be stable [1] imposes a restriction on the selection of the auxiliary
surface: in order that the singular points (the centers of the spheres) be inside the sphere, the latter must
enclose the segment [− a ⁄ 2, b − a ⁄ 2]. To satisfy this requirement, the similarity coefficient α must exceed
0.39.

The results of calculations for the body suggested for consideration are presented in Fig. 1, which
presents the diagram of the radiolocation section for scattering as a function of the incidence angle for the
case of parallel polarization of the incident wave. The experimental data of [4] were used for comparison.
The curves have a maximum near 75o from the direction of specular reflection from the cone part of the
surface. It is seen from the figure that there is a good agreement between the calculated and measured values,
especially if we take into consideration that the agreement holds in the dynamic range of 20 dB.

In the case considered, the optimal value of α was determined to obtain reliable results with a mini-
mum N, i.e., with the smallest expenditures of computer time. For this purpose, computation was made for
α 2 [0.1; 0.8] with a step of 0.1 on grids with 52, 112, and 152 meshes.

The reliability of the results obtained was evaluated by controlling the accuracy with which the
boundary conditions and the reciprocity theorem were fulfilled. The minimum errors (at a fixed number of
meshes N) correspond to the most accurate solution, which is obtained for an optimum position of the auxil-

Fig. 1. Dependence of the radiolocation section for scattering of the
sphere−cone−sphere, normalized to the area of the diametral section of a
large sphere, on the angle of incidence (degrees). The solid curve repre-
sents theory; the dashed curve is the experiment.

Fig. 2. Dependence of the uncertainty in the satisfaction of boundary
conditions (δ, % of the incident wave amplitude) on the coefficient of
similarity α.
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iary surface. The accuracy with which the boundary conditions (of the residual) were fulfilled was controlled
at the nodes, which are intermediate to those at which they were set. The dependence of the uncertainty with
which the boundary conditions are satisfied on the similarity coefficient α (i.e., on the position of the auxil-
iary surface) for the case of 152 meshes is given in Fig. 2. The similarity coefficients α are laid on the
abscissa axis and the maximum values of the residual that were obtained in calculation of diagrams are laid
on the ordinate axis. It is seen from the figure that the value of the error is minimum at α = 0.4−0.5, i.e.,
when the auxiliary surface is located near the singular points. For N = 52, the position of the minimum prac-
tically did not change, whereas the value of the residual increased, as was expected. At N = 112, the position
of the minimum was displaced by about 0.1 to the left.

In the calculations, the error in the fulfillment of the reciprocity theorem was controlled; according to
this theorem, the amplitude of the wave scattered forward must not change on reversal of the direction of
incidence. By virtue of the axial symmetry of the scatterer, this corresponds to the reflection of the direction
of incidence relative to the plane normal to the symmetry axis. To control the error, total sections for scat-
tering were computed and the uncertainty was defined as the ratio of their difference to the half-sum in the
case of axial incidences (0 and 180o), since in this case maximum divergences were fixed. Table 1 provides
understanding of the fulfillment of the reciprocity theorem.

It is seen from the table that on increase of N the auxiliary surface, which corresponds to the mini-
mum of uncertainty, shifts to the scattering surface, which may be due to the singularity contained in the
Green’s function of the free space.

Since in the case where N = 152 the results of computations at α = 0.6 and 0.7 turned out to be
nearly the same, we may assume, on the basis of Table 1, that the optimum coefficient of similarity lies near
0.6. To check this assumption, computations were performed with N = 52. The comparative analysis of the
data obtained at α = 0.5 and α = 0.7 showed that the accuracy of computations turned out to be satisfactory,
while at α = 0.6 the relative error did not exceed 11% when N = 52 had been replaced by N = 152; the value
at the central maximum was 1.4%. The result obtained is in complete agreement with the conclusion made in
[5] for a two-dimensional case, in conformity with which, at not very high requirements placed on the accu-
racy of the computations, it is worthwile to place an auxiliary surface approximately in between the singular
points and the scatterer surface.

The computations made showed that the method gives good results in a certain region of the values
of α which expands with increase in the number of meshes. At N = 52, this is the small region near α = 0.6,
and for N = 152 this is the segment [0.2; 0.7].

As a second example, we consider a sharp cone with a spherical base. Formally, one cannot apply
here the method of auxiliary sources, because the normal to the surface is discontinuous on the cone vertex.
However, it is known that if a scattering surface is deformed so that the size of deformation is much smaller
than the incident wavelength, then the scattering characteristics will remain as they were before, i.e., the wave
does not note the change in the scatterer surface. This fact allows tapering of the cone. The radius of this
tapering must be substantially smaller than the characteristic dimensions of the body and of the incident
wavelength. From this it becomes clear that the auxiliary surface must not be shifted far from the scattering
one, at least near the vertex, as it must enclose the centers of the spheres for the method to be stable. This

TABLE 1. Dependence of the Uncertainty in Determining the Coefficient of Similarity on the Number of Meshes

Number of meshes
N

Coefficient of similarity α

0.4 0.5 0.6 0.7 0.8

112 7.3 3.3 0.14 1.6 3.1

152 0.9 0.9 0.64 0.16 2.9
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and the requirement of preventing poor conditionality of the matrix allow the conclusion that here it is con-
venient to use an equidistant auxiliary surface.

The surface was divided into zones along the symmetry axis just as before: the conical surface was
divided into belts of equal area and the spherical ones uniformly over the angle. The meshes were obtained
by uniform division of the zones by the azimuthal angle.

The characteristics of scattering were computed for a cone−sphere with the following parameters: the
semivertex angle of the cone is 15o, ka = 1.7 (a is the radius of the sphere). Investigations of the convergence
of the method depending on the radius of curvature were carried out in relation to the body indicated. The
best results were obtained for a curvature radius of about 0.2a. The dependence of the radiolocation section
for scattering on the incidence angle for perpendicular polarization of the incident wave is shown for this
case in Fig. 3 by dots. The solid line in this figure corresponds to the experimental data of [6].

As a result of the investigations carried out, a computational procedure has been developed for pre-
dicting the characteristics of scattering of electromagnetic waves on complex-shaped bodies. The reliability of
the procedure is confirmed by the good coincidence of the theoretical and experimental data. The method
implemented makes it possible to calculate, with a good degree of accuracy, the radiolocation characteristics
of small-size bodies of complex noncoordinate shape. The number of meshes required for obtaining a reliable
result depends strongly on the way of selecting an auxiliary surface. In view of this, the time of numerical
solution, approximately proportional to N3, can change by more than an order of magnitude.

NOTATION
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), incident electrical and magnetic fields; E
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1(r

_
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), scattered electrical and mag-
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, radius-vector; r′, integration variable; r, coordinate on the surface S; n

_
, external normal; I

_
el and

I
_

mag, electric and magnetic currents; k
_
, wave vector; k, wave number; λ, wavelength of the field; F

__
, vector

amplitude of scattering; e
_

0 and e
_
 0′ , unit vectors that characterize polarization of electromagnetic waves; µ0

and ε0, magnetic and dielectric permeabilities of free space; σtot, total section for scattering; σrad, radioloca-
tion section for scattering; U, angle of incidence of an electromagnetic field; δ, error; N, number of meshes
on the auxiliary surface.

Fig. 3. Dependence of the radiolocation section for scattering of the
cone−sphere, normalized to the square of the length of the incident wave
(degrees).
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